From Jack Polynomials to Minimal Model Spectra
نویسنده
چکیده
In this note, a deep connection between free field realisations of conformal field theories and symmetric polynomials is presented. We give a brief introduction into the necessary prerequisites of both free field realisations and symmetric polynomials, in particular Jack symmetric polynomials. Then we combine these two fields to classify the irreducible representations of the minimal model vertex operator algebras as an illuminating example of the power of these methods. While these results on the representation theory of the minimal models are all known, this note exploits the full power of Jack polynomials to present significant simplifications of the original proofs in the literature.
منابع مشابه
An Identity of Jack Polynomials
In this work we give an alterative proof of one of basic properties of zonal polynomials and generalised it for Jack polynomials
متن کاملSuperconformal Minimal Models and Admissible Jack Polynomials
We give new proofs of the rationality of the N = 1 superconformal minimal model vertex operator superalgebras and of the classification of their modules in both the Neveu-Schwarz and Ramond sectors. For this, we combine the standard free field realisation with the theory of Jack symmetric functions. A key role is played by Jack symmetric polynomials with a certain negative parameter that are la...
متن کاملJACK POLYNOMIALS AS FRACTIONAL QUANTUM HALL STATES AND THE BETTI NUMBERS OF THE (k + 1)-EQUALS IDEAL
We show that for Jack parameter α = −(k+1)/(r−1), certain Jack polynomials studied by Feigin–Jimbo–Miwa–Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laugh...
متن کاملThe Tangent Analogues of the Chebyshev Polynomials
We study the tangent analogues tan(n arctanx) of the Chebyshev polynomials from an algebraic viewpoint. They are rational functions of a pleasant form and enjoy several noteworthy properties: a useful composition law, their numerators pn(x) split into the minimal polynomials of the numbers tan kπ/n, they define the elements of the Galois groups of these minimal polynomials, and their algebraic ...
متن کاملVector-Valued Jack Polynomials from Scratch
Vector-valued Jack polynomials associated to the symmetric group SN are polynomials with multiplicities in an irreducible module of SN and which are simultaneous eigenfunctions of the Cherednik–Dunkl operators with some additional properties concerning the leading monomial. These polynomials were introduced by Griffeth in the general setting of the complex reflections groups G(r, p,N) and studi...
متن کامل